การทดสอบแรงดึงคืออะไร
การทดสอบแรงดึงใช้สำหรับการประเมินความแข็งแรงของโลหะหรือโลหะผสมด้วยการใช้วิธีดึงจนขาดในช่วงเวลาสั้น ๆ ด้วยอัตราคงที่ ตัวอย่างที่ใช้ทดสอบจะมีลักษณะแตกต่างกันไปสำหรับโลหะอาจทำเป็นแผ่นหรืออาจทำเป็นแท่ง โดยข้อมูลที่ได้คือกราฟระหว่างความเค้นกับความเครียดทางวิศวกรรมหรือแรงและการเปลี่ยนแปลงรูปร่างของชิ้นงาน
ข้อมูลสมบัติเชิงกลที่ได้จากการทดสอบแรงดึงและ แผนภาพความเค้นและความเครียด ทางวิศวกรรมมีดังนี้
- โมดูลัสของความเป็นอิลาสติก (Modulus of elasticity)
- ความเค้นและความเครียด ณ. จุดคราก (Stress and strain at yield)
- ความต้านทานแรงดึงสูงสุด (Ultimate tensile stress)
- เปอร์เซ็นต์การยืดตัว (Percent elongation)
โมดูลัสของความเป็นอิลาสติก (Modulus of elasticity)
โมดูลัสของความเป็นอิลาสติก : เป็นค่าความต้านทานต่อการเปลี่ยนแปลงรูปร่างของวัสดุ เมื่อได้ รับแรงกระทำสามารถหาได้จากความชันของกราฟความเค้นและความเครียดของวัสดุในระยะแรก ที่ยังแสดงสมบัติยืดหยุ่นอยู่ สำหรับโลหะจะมีค่าน้อยกว่า 0.5 % ของความเครียด โดยที่โมดูลัส ของความเป็นอิลาสติกนี้เกี่ยวข้องกับความแข็งแรงของพันธะ (bond strength) ระหว่างอะตอม ของโลหะหรือของโลหะผสม (ดูตารางที่ 1) โลหะที่มีค่าโมดูลัสของความเป็นอิลาสติกสูงจะแกร่ง ไม่เปลี่ยนแปลงรูปร่างง่าย เช่น เหล็กกล้ามีค่าโมดูลัสของการยืดตัว 30 x 106 psi. (207 GPa) ในขณะที่โลหะอลูมิเนียมมีค่าต่ำกว่าประมาณ 10 - 11 x 106 psi (69 - 76 GPa) โปรดสังเกตว่า ในช่วงความยืดตัวของแผนภาพความเค้นและความเครียดค่าโมดูลัสจะไม่มีการเปลี่ยนแปลง เมื่อความเค้นเพิ่มขึ้น
ตารางที่ 1 แสดงค่าคงที่ของการยืดตัวของ Isotropic Materials ที่อุณหภูมิห้อง
| Materials | Modulus of elasticity | Shear Modulus | Poisson’s ratio |
| 10-6 psi (GPa) | 10-6 psi (GPa) | ||
| Aluminium alloys | 10.5 (72.4) | 4.0 (27.5) | 0.31 |
| Copper | 16.0 (110) | 6.0 (41.4) | 0.33 |
| Steel | 29.0 (200) | 11.0 (75.8) | 0.33 |
| Stainless steel | 28.0 (193) | 9.5 (65.6) | 0.28 |
| Titanium | 17.0 (117) | 6.5 (44.8) | 0.31 |
| Tungsten | 58.0 (400) | 22.8 (157) | 0.27 |
ที่มา : G.Dieter "Mechanical Metallurgy". 3d.ed. McGraw-Hill, 1986 G = giga = 109
ความเค้นและความเครียด ณ. จุดคราก (Stress and strain at yield)
ความเค้นและความเครียด ณ. จุดคราก : เป็นค่าความเค้นและความเครียดของวัสดุ ณ.จุดที่เปลี่ยน สมบัติจากอิลาสติกไปเป็นพลาสติก หรืออีกนัยหนึ่งหมายความว่าวัสดุนั้นจะมีการเปลี่ยนแปลงรูปร่าง อย่างถาวรเมื่อความเค้นหรือความเครียดมีค่ามากกว่านี้ สำหรับวัสดุที่แสดงจุดครากอย่างชัดเจนเราจะ สังเกตได้จากที่กราฟมีค่าความชันเท่ากับศูนย์ ส่วนในกรณีที่วัสดุไม่แสดงจุดครากอย่างอย่างชัดเจนนั้น อาจกำหนดให้ใช้ 0.2% หรือ 0.1% ของ plastic strain ที่เกิดขึ้นในแผนภาพความเค้นและความเครียด เป็นค่ากำหนดในการหาจุดคราก อาจเรียกได้อีกอย่างหนึ่งว่า offset yield
ความต้านทานแรงดึงสูงสุด (Ultimate tensile strength)
ความต้านทานแรงดึงสูงสุด : คือความแข็งแรงสูงสุดของวัสดุ พิจารณาจากความเค้นทางวิศวกรรม สูงสุดในแผนภาพความเค้นและความเครียดค่านี้ไม่ค่อยใช้มากในงานออกแบบทางวิศวกรรมก่อสร้าง โดยเฉพาะอย่างยิ่งกับพวกโลหะอ่อน (ductile alloy) เนื่องจากมีการการเปลี่ยนรูปอย่างถาวรขึ้น อย่างมากก่อนถึงค่าความต้านทานแรงดึงสูงสุด แต่อย่างไรก็ตามค่าความต้านทานแรงดึงสูงสุดนี้ ยังสามารถบ่งชี้ได้ว่าโลหะนั้นมีความสมบูรณ์หรือไม่ถ้าโลหะนั้นไม่สมบูรณ์ เช่น มีรูพรุน (Porosity) จะทำให้ค่า strength ลดลง
เปอร์เซ็นต์การยืดตัว (Percent elongation (%Strain) )
เปอร์เซ็นต์การยืดตัว : ปริมาณ เปอร์เซ็นต์การเปลี่ยนแปลงรูปร่างของชิ้นงานตัวอย่างภายใต้แรงดึง เมื่อเทียบ กับระยะการวัด (gage length) ของชิ้นงานทดสอบ และยังเป็นค่าที่ใช้บอกถึงความอ่อน (ductile) ของวัสดุ โดยทั่วไปโลหะยิ่งอ่อนยิ่งมีค่าเปอร์เซ็นต์ความยืดมากแสดงว่าโลหะนั้นเปลี่ยนรูปมาก สำหรับโลหะอลูมิเนียมบริสุทธิ์ที่เป็นแผ่นหนา 0.062 นิ้ว (1.6 mm) จะมีเปอร์เซ็นต์การยืดตัว สูง ถึง 35 % แต่ถ้าเป็นโลหะอลูมิเนียมผสม (ความแข็งแรงสูงกว่า) 7075-T6 ที่หนาเท่ากัน จะมีเปอร์เซ็นต์การยืดตัว เพียง 11 % เปอร์เซ็นต์การยืดตัว ณ จุดที่ขาดมีความสำคัญทางด้านวิศวกรรมมาก เพราะนอกจากจะทำ ให้เราทราบว่าโลหะนั้นอ่อนเพียงใดแล้วยังจะเป็นดัชนีที่ชี้ให้ทราบว่าโลหะนั้นมีคุณภาพอย่างไรอีกด้วย
ไม่มีความคิดเห็น:
แสดงความคิดเห็น